Power Series Solutions and Frobenius

September 16, 2017

Method
, . Outline
Power Series Solutions and
Frobenius method » Review last week
» Power series solutions
Larry Caretto — General approach
Mechanical Engineering 501AB — Application
Seminar in Engineering Analysis « Frobenius method
— Basic process
October 16, 2017 — Application to Bessel's Equation
* Review for midterm on Wednesday
Northridge 2
Review last week Review Last Week |l
« Systems of differential equations » Solved system of linear first order
derived from phy3ica| problems differential equations
involving different, interacting parts d "
* Showed how to convert two second % +Y ay; =)  i=1..n
order equations into one fourth order t =
equation dy
— Solved fourth order equation for one dt + Ay =r
variable then used algebra for second ) .
— Fit initial conditions on both variables using + Solved in terms of eigenvalues, |, and
both solutions eigenvector matrix, X, for A
Northridge ’ Northridge ‘
Review Last Week llI Review Last Week IV
* Define new variable, s = X'y (y = Xs) « Definitions to convert s, = Ce’t + g; into
» Transform original equation as follows matrix equation s = E(t)C + q (E(0) =1)
ds ds Mai 1 .- r
XIX= 4 XIAXs=XTr = —4+As=XTr=p e* 0 0 e 0 c, ol
dt dt 0 e 0 ... ... 0 c, a0
» Transformed equation is scalar equation 0 0 e* ... ... 0 c 05
whose solution is known BO= . . . |c=| Pla=|
S; =Le‘_k_if[[ekit pdt+C, J: Ce ™ +0;, oo o : :
O Lo Lo |0 0 0 o @M C. ] q
Northridge ° Northridge °
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Method

Review Last Week V Review ODE Solution Basis
+ Convert matrix equation for s into - A homogenous nt" order ODE has a
matrix equation for y usingy = Xs basis of n linearly independent solutions
* Apply initial condition thaty =y, at t « d?y/dx? — k?y = 0 has the following
=0, (where E=1,): C = Xy, —qq possible solutions: ek, e*, sinh(kx),

. R Ay and cosh(kx) but only two of these are
Result:y = XE [Xy, — qo + Xq linearly independent

* Homogenous (q = 0): y = XEX""y, * Have to find complete basis to be able

to represent all possible initial or
boundary conditions

Calsforri State Universicy Calsforri State Universicy
Northridge Northridge

Power Series Solutions Getting the Solutions
« Look at following differential equation » Differentiate power series solution and
and proposed power series solution substitute it into differential equation
» Requires p(x), q(x) and r(x) that can be dy < ey A G 2
expanded in power series about X = X, dx 2,12, (X~ %;) dx? nz(‘;n(n Da, (x-%,)
d%y &Y 002 qy =10

#9002+ g0y = (9

dx? Zn(n Da, (x-%,)"? + p(x)Zna (X=X)™ 1+q(><)2a (X-%,)" = r(X)
y(x) = Zan (X-X,)" « Look at simple example with p(x ) = r(x)
- =0 and q(x) = k?
Nnrthrlulge ¢ Nnrthrl(lqe °
Getting the Solutions |l Manipulating Summations
n-2 S n(n—1)a (x-x,)" =040+ n(n—1)a, (x-x,)">
nZ(;n(n Da, (x-X,) +k2a(xx)— Z:o:( )a, (X - %) HZ;( )a, (X %,)
* In ord_er to satisfy the power series i(m +2)(m+1)a, ,(x-%,)" —Z(” +2)(n+1)a,,,(x-X,)"
equation X _c . xm"=0,allc, =0 =0 10
« Combine two sums into one with * First sum now has same (x — x,)" factor
common limits and common powers of x and 0 to o limits as second sum
—Letn=m+ 2in first sum n-2 n
_1 - k2 -
— First two terms in this sum are zero Zn(n )3, (x-%) "+ Zan(x %)
— Rewrite first sum so that it has same limits
as second sum (after dropping first two = Z[(n +2)(n+Da, ., +k’a ](x X,)" =
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Making Coefficients Vanish

S [n+2)(n+Da,., +k%a, [x-%) =0

» Each coefficient of (x — x,)" vanishes if
(n+2)(n+1)a,, +ka,=0

+ Gives k’a,

recursion A, =———————
equation for a, T (n+2)(n+1)
a - k’a, k%, k'a, Continued
2= 2 4 6 T 4.3.2 nextslide
ﬁf;Hii"f'ifiﬁé Want a, as function of n 1

September 16, 2017

Making Coefficients Vanish Il

k’a, k’a, k'a,
a,=- a,=- =
2 »HQR) 4-3-2
» Continue k2a
recursion a,,=———
equation for a,, (n+2)(n+1)
k’a, k¥ k'a, k'

% T (4+2)04+1)  (6)5)4-3-2  6.54-32

* Propose general (—1)%k”aO
equation for a, a, = ol
Jith gven n '
Northridge

Check a, Equation

%
« Write general a, a - (D)?k"a,
equation for a,,, then n! n2)
check ratio a,,,/a, B w

a
(_1)(n+2% k”*zao n+2 (n 4 2)
., (+2)! -kl k?
a, (—1)%k”a0 (n+2)! (n+2)(n+1)

n!
» Proposed a, equation gives same result

for a,,,/a, derived from power series

15

Northridge

Repeat Process for odd a,

+ All odd a, proportional to a,

+ Original solution now has two series

— Solutions are expected power series for
sine and cosine

—ag and a, chosen to fit initial conditions

o0 -afo sl bl ]

+a1{k(x_xo)_[k<x-xo)r ke )F }

3 5

Calsforri State Universicy
Northridge

Summary for 372/+ P(X)%w(x)y: r(x)

* Write the solution for
y(x) as a power series
in unknown coefficients

» Differentiate the power gy ¢ —
series to get the " )
derivatives required in g:in(nfl)a"(x_xu)n,z
the differential equation % =

» Get series for p(x), q(x), r(x) if required
itute into differential equation

Y00 = 3, (x- )"

Summary Continues

Rewrite the resulting equation to group
terms with common powers of x — x,.

« Set the coefficients of each power of x —
X, equal to zero giving an equation
relating neighboring values of a,
Relate coefficients with higher sub-
scripts to those with lower subscripts.
Initial unknown coefficients, e.g., a,, ay,
., are found from initial conditions
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Summary Concludes

« Examine equations relating neighboring
coefficients and try to obtain a general
equation for each an in terms of the
unknown coefficients a,, a,, etc.

+ Substitute the general expression for a,
into the original power series for y(x)

» This is the final power series solution

Calsforri State Universicy
Northridge

Frobenius Method

» Applied to differential equation below
around x, = 0 where b(x)/x and c¢(x)/x?
make usual power series method
inapplicable

d*y(x) , b(x) dy(x) , c(x) -0
dx? x dx x?

+ Solution similar to previous power
series (with x, = 0) except for x" factor

o0 o0
y) =x"> ax"=>"ax"
n=0 n=0

Calsforri State Universicy
Northridge ®

Frobenius Method Il

« Differentiate proposed solution two times
» Get power series for b(x) and ¢(x)
% = nzz;(n +r)a,x"" Z% = nZ:;(n +r)(n+r-1)a,x""?
b(x) = ibnx" c(x) = icnx"
. Substitujrie0 into original equn;)tion
d?y(x) + b(x) dy(x) , c(x)

+
dx? X dx x?

y=0

Calsforri State Universicy
Northridge n

Frobenius Method Il

d*y(x) +@ dy(x) N c(x) y=0
dx? X dx x?

Do (n+r)(n+r—Da x" "+

n=0
- »
X", e,
n=0 D (n+r)a, X" 420 ax" =0
X X n=0

* Manipulate to get single summation with
common power of x in each term

Calsforri State Universicy
Northridge 2

Frobenius Method IV

* Multiply result by x2 and combine x and
x2 factors with x"*r terms in sums

o A w
> (n+r)(n+r-1)ax"" J{anx”joB
n=0

n=0

(i(n + r)anxnﬂ] + (icnxnﬁianxnﬂ] _ 0

n=0

* Expand series and multiply term by term
to get first few terms in the series for the
vhere b(x) = b, and c(x) = ¢,

23

Frobenius Method V

A r(r=Dax" + @+ r)rax™ + 2+ r)L+r)ax " +--
+b0raoxl’ +[blra0+bo(1+r)a1]xr+1+
B [bzrao +b(1+r)a +b,(2+ r)az]x”2 T+

C +CapX" +[c,a, + Gyt X +[C,8, + Ca, + Gy, X2 ++--=0

« Coefficients of x" term must vanish
—r(r-1)ap + bgrag + cyag =0
—Do notwanta, =0
— This requires r(r-1) + byr + ¢, =0

' 24
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Method

Frobenius Method V

+ Equation r(r— 1) + byr + ¢, = 0 is known
as indicial equation
* It is a quadratic equation giving two
solutions for (index) r
1-hy ++/@-b, ) —4c,
S T
» Choose higher value of r for first solution
» Second ODE solution depends on r values

— Double root, roots differing by an integer, roots
dlfferlng by a non-integer

25

September 16, 2017

Frobenius Method VI

First and second solutions y;(x) and y,(x)
First solution, all cases y,(x) = Xrlzanxn
Root difference r, R

—r, not an integer ¥, (X) = XZZPMX

¥o(X) = y1(x) In(x) + Z AX'

* Double root

* Roots differ . .
by integer (k Y, (X) =ky, (x) In(x) + x ZZ AX
may be 0)

Nnrlhrulge

26

Frobenius Method VII

» Overall approach with this method

— Convert b(x) and c¢(x) into power series if
these are not simple terms

— Find indicial equation roots r, and r,

— Apply power series analysis to find a,
coefficients in y, equation

— Based on roots, determine second solution
— Apply power series method to find A,, (and
possibly k) in correct y, equation

27

Calsforri State Universicy
Northridge

Bessel’'s Equation

* Arises in mechanical and thermal
problems in circular geometries

» The value of v is a known parameter
» Solve as example of Frobenius method

d?y(x) 1ldy(x) x*-v?
= 27V yoo
o X Y dy
dx

=Y (n+r)a,x"*
n=0

©
n+r-2

y(X)— X Z n+r

n=0

28

Nnrthrltlge

Bessel’s Equation Il

* Plug solution and derivatives into
Bessel's equation and rearrange

Z(n +r)(n+r-2a x"" +Z(n +r)a, X" + (x - vz)ianx“*r =0

n=0 n=0

i[(n+ N(n+r -8+ -2, x™ +Zan%"'z =0

___________

iy \

Z[(n+r) —v ]a X" ’|+Za x” “2-g | BOth aox z4
)

NP
_Z[(n+r)2—v]ax”*'+2a X" ,_0 ---------- -

| n=2

Nnrthrltlge
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Bessel’s Equation IlI

+ Final arrangement gets indicial equation

Z [(n + r)z _Vz]anxn+r +Z arl72>(n+r _
n=2

+[(1+ r)? —vz]aix“’ +i[(n+ r)’a,

« Indicial equation (r2 —v2 = 0) roots r = +v
— Solution gives double rootif v=0
— Roots differ by an integer for integer v

— Roots do not differ by an integer for non-
_ |nteger v

via, + an,z]x"*r =0

30

Nnrthrltlge
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Bessel's Equation IV

» Continue next week after midterm
» Get series solutions for Bessel functions
for three cases
— Double root forv=0
— Roots differing by an integer
— Non-integer roots

 Find two different series for any value of
v just like finding sine and cosine series
in power series solution for d % L, +k?y=0

1 Sate Uniyersity

Nnrlhrl(lqe s

September 16, 2017

Review for Midterm

* Vectors, matrices and determinants
— Basic operations, particularly multiplication
— Find determinants and matrix inverses

— Vectors are linearly dependent if Zoyv;;) = 0
with at least one o; # 0

— A basis set for an n-dimensional vector
space has n linearly independent vectors
that can represent any vector in the space

» Gauss elimination process for solving
_.equations determines linear dependence

A Sl Lnhversa

Nnrlhrulqe

Midterm Review I

+ Solutions to linear equations Ax = b
— Unique if rank[A b] = rank A = N nowns

— Infinite solutions if rank[A b] = rank A is
less than number of unknowns

— No solution if rank[A b] # rank A
» Eigenvalues and eigenvectors: Ax = Ax
— Det(A - IL) = 0 gives eigenvalues

— Solve (A —IA)x = 0 for components of each
eigenvector (one component arbitrary)

1 St Lnversity

Nnrthrl(lqe ®

Midterm Review llI

« Diagonalize a matrix: A = X-1AX
— X is matrix of eigenvectors
— A is diagonal matrix of eigenvalues
— Works only if X has an inverse
+ Special matrices
— Unitary matrix columns have [x*;]*x;, = §;

— Orthogonal matrix columns have [x]*x; = J;

— Hermitian matrix A* = AT
* For Hermitian matrix A" = AT

1 St Lnversity

Nnrthrl(lqe #

Midterm Review IV

* First-order differential equations

— Separable forms, e.g. dy/dx = f(x)g(y)

— General linear equation dy/dx + f(x)y = g(x)
has solution y = e[C + JePg(x)dx] where p
= [f(x)dx

— Other separable forms

— Solutions to dy/dx = f(x,y) exist over a
region about x4 < min(a, b/K) where a,b are
is x,y borders and K = max(|f|)

— Unique solution if |6f/x| is bounded

o Sale Linive

Nnrthrl(lqe %

Midterm Review V

» Second-order differential equations with
constant coefficients: d2y/dx? + ady/dx +
By = r(x): find A, and A,

ﬂlz—a+ a’-4p %:—a—xlaz—llﬂ

-rx)=0 éives homogenous soltzjtion, YH
* Forreal &, and X,, y, = C,e** + C et
 Forreal &, = &, = &, Y = (C,+Cx)eM
» For complex roots, y = Acos(wx) + Bsin(wx),
where 02 = B — (a/2)?= B — a?/4
oForr(x)#0y =y, +yp

A Sl L

Nnrthrl(lqe %
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Midterm Review VI

Midterm Exam

« For nonhomogeneous solutions find
solutiony =y, + yp
 To get particular solution, yp
— Write form for yg, based on form for r(x)
— Substitute postulated y, with unknown
constant(s) into particular equation
— Equate coefficients of like terms to find
unknown constants
—Usey =y, + yp to find constants from
s NOMogenous solution from boundary values
Northridge ¥

» Open book and notes, including
homework solutions
* Make your own notes to use for exam

—You are in trouble if you have to use the
book on an open-book exam

* May be useful to have integral tables
More credit given for showing how to
obtain solution than for providing final
details of algebra or arithmetic

Calsforri State Universicy
Northridge

38
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