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Outline

• Review last week

• Power series solutions
– General approach

– Application

• Frobenius method
– Basic process

– Application to Bessel’s Equation

• Review for midterm on Wednesday
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Review last week

• Systems of differential equations 
derived from physical problems 
involving different, interacting parts

• Showed how to convert two second 
order equations into one fourth order 
equation
– Solved fourth order equation for one 

variable then used algebra for second
– Fit initial conditions on both variables using 

both solutions
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Review Last Week II

• Solved system of linear first order 
differential equations
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• Solved in terms of eigenvalues, l, and 
eigenvector matrix, X, for A
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Review Last Week III

• Define new variable, s = X-1y (y = Xs)

• Transform original equation as follows
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• Transformed equation is scalar equation 
whose solution is known
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Review Last Week IV

• Definitions to convert si = Cie
i
t + qi into 

matrix equation s = E(t)C + q (E(0) = I)
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Review Last Week V

• Convert matrix equation for s into 
matrix equation for y using y = Xs

• Apply initial condition that y = y0 at t 
= 0, (where E = I,): C = X-1y0 – q0

• Result: y = XE [X-1y0 – q0] + Xq
• Homogenous (q = 0): y = XEX-1y0
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Review ODE Solution Basis

• A homogenous nth order ODE has a 
basis of n linearly independent solutions

• d2y/dx2 – k2y = 0 has the following 
possible solutions: ekx, e–kx, sinh(kx), 
and cosh(kx) but only two of these are 
linearly independent

• Have to find complete basis to be able 
to represent all possible initial or 
boundary conditions
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Power Series Solutions

• Look at following differential equation 
and proposed power series solution

• Requires p(x), q(x) and r(x) that can be 
expanded in power series about x = x0
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Getting the Solutions

• Differentiate power series solution and 
substitute it into differential equation
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• Look at simple example with p(x) = r(x) 
= 0 and q(x) = k2
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Getting the Solutions II

• In order to satisfy the power series 
equation mcmxm = 0, all cm = 0

• Combine two sums into one with 
common limits and common powers of x
– Let n = m + 2 in first sum
– First two terms in this sum are zero
– Rewrite first sum so that it has same limits 

as second sum (after dropping first two 
terms)
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Manipulating Summations
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• First sum now has same (x – x0)n factor 
and 0 to  limits as second sum
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Making Coefficients Vanish
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• Each coefficient of (x – x0)n vanishes if 
(n + 2)(n + 1)an+2 + k2an = 0
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Continued 
next slide

Want an as function of n 14

Making Coefficients Vanish II
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recursion 
equation for an+2
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Check an Equation

• Write general an

equation for an+2 then 
check ratio an+2/an
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• Proposed an equation gives same result 
for an+2/an derived from power series
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Repeat Process for odd an

• All odd an proportional to a1

• Original solution now has two series
– Solutions are expected power series for 

sine and cosine
– a0 and a1 chosen to fit initial conditions
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Summary for 

• Write the solution for 
y(x) as a power series 
in unknown coefficients

• Differentiate the power 
series to get the 
derivatives required in 
the differential equation
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• Get series for p(x), q(x), r(x) if required

• Substitute into differential equation
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Summary Continues

• Rewrite the resulting equation to group 
terms with common powers of x – x0.

• Set the coefficients of each power of x –
x0 equal to zero giving an equation 
relating neighboring values of an

• Relate coefficients with higher sub-
scripts to those with lower subscripts.  

• Initial unknown coefficients, e.g., a0, a1, 
etc., are found from initial conditions
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Summary Concludes

• Examine equations relating neighboring 
coefficients and try to obtain a general 
equation for each an in terms of the 
unknown coefficients a0, a1, etc.

• Substitute the general expression for an

into the original power series for y(x)

• This is the final power series solution
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Frobenius Method

• Applied to differential equation below 
around x0 = 0 where b(x)/x and c(x)/x2

make usual power series method 
inapplicable

• Solution similar to previous power 
series (with x0 = 0) except for xr factor
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Frobenius Method II

• Differentiate proposed solution two times
• Get power series for b(x) and c(x)

• Substitute into original equation
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Frobenius Method III

• Manipulate to get single summation with 
common power of x in each term
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Frobenius Method IV
• Multiply result by x2 and combine x and 

x2 factors with xn+r terms in sums
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• Expand series and multiply term by term 
to get first few terms in the series for the 
case where b(x) = b0 and c(x) = c0
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Frobenius Method V

• Coefficients of xr term must vanish
– r(r-1)a0 + b0ra0 + c0a0 = 0

– Do not want a0 = 0

– This requires r(r-1) + b0r + c0 = 0
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Frobenius Method V

• Equation r(r – 1) + b0r + c0 = 0 is known 
as indicial equation

• It is a quadratic equation giving two 
solutions for (index) r
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• Choose higher value of r for first solution
• Second ODE solution depends on r values

– Double root, roots differing by an integer, roots 
differing by a non-integer
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Frobenius Method VI

• First and second solutions y1(x) and y2(x) 

• Double root
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• Root difference r1
– r2 not an integer
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Frobenius Method VII

• Overall approach with this method
– Convert b(x) and c(x) into power series if 

these are not simple terms

– Find indicial equation roots r1 and r2

– Apply power series analysis to find an

coefficients in y1 equation

– Based on roots, determine second solution

– Apply power series method to find An (and 
possibly k) in correct y2 equation
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Bessel’s Equation

• Arises in mechanical and thermal 
problems in circular geometries

• The value of  is a known parameter

• Solve as example of Frobenius method 
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Bessel’s Equation II

• Plug solution and derivatives into 
Bessel’s equation and rearrange
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Bessel’s Equation III

• Final arrangement gets indicial equation
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• Indicial equation (r2 – 2 = 0) roots r = 
– Solution gives double root if  = 0
– Roots differ by an integer for integer 
– Roots do not differ by an integer for non-

integer 
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Bessel’s Equation IV

• Continue next week after midterm

• Get series solutions for Bessel functions
for three cases
– Double root for  = 0

– Roots differing by an integer

– Non-integer roots

• Find two different series for any value of 
just like finding sine and cosine series 
in power series solution for 

31
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Review for Midterm

• Vectors, matrices and determinants
– Basic operations, particularly multiplication

– Find determinants and matrix inverses

– Vectors are linearly dependent if iv(i) = 0
with at least one i ≠ 0

– A basis set for an n-dimensional vector 
space has n linearly independent vectors 
that can represent any vector in the space

• Gauss elimination process for solving 
equations determines linear dependence

33

Midterm Review II

• Solutions to linear equations Ax = b
– Unique if rank[A b] = rank A = Nunknowns

– Infinite solutions if rank[A b] = rank A is 
less than number of unknowns

– No solution if rank[A b] ≠ rank A

• Eigenvalues and eigenvectors: Ax = x
– Det(A – I) = 0 gives eigenvalues

– Solve (A – I)x = 0 for components of each 
eigenvector (one component arbitrary)

34

Midterm Review III

• Diagonalize a matrix: Ʌ = X-1AX
– X is matrix of eigenvectors

– Ʌ is diagonal matrix of eigenvalues

– Works only if X has an inverse

• Special matrices
– Unitary matrix columns have [x*(i)]•x(j) = ij

– Orthogonal matrix columns have [x(i)]•x(j) = ij

– Hermitian matrix A* = AT

• For Hermitian matrix A-1 = AT

35

Midterm Review IV

• First-order differential equations
– Separable forms, e.g. dy/dx = f(x)g(y)

– General linear equation dy/dx + f(x)y = g(x) 
has solution y = e-p[C + ∫epg(x)dx] where p 
= ∫f(x)dx

– Other separable forms

– Solutions to dy/dx = f(x,y) exist over a 
region about x0 < min(a, b/K) where a,b are 
is x,y borders and K = max(|f|)

– Unique solution if |f/x| is bounded
36

Midterm Review V

• Second-order differential equations with 
constant coefficients: d2y/dx2 + dy/dx + 
y = r(x): find 1 and 2

– r(x) = 0 gives homogenous solution, yH

• For real 1 and 2, yH = C1e
1
x + C2e

2
x

• For real 1 = 2 = , yH = (C1+C2x)eλx

• For complex roots, y = Acos(x) + Bsin(x), 
where 2 = β – (α/2)2= β – α2/4

– For r(x) ≠ 0 y = yH + yP
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Midterm Review VI

• For nonhomogeneous solutions find 
solution y = yH + yP

• To get particular solution, yP

– Write form for yP, based on form for r(x)

– Substitute postulated yP with unknown 
constant(s) into particular equation

– Equate coefficients of like terms to find
unknown constants

– Use y = yH + yP to find constants from 
homogenous solution from boundary values 

37 38

Midterm Exam

• Open book and notes, including 
homework solutions

• Make your own notes to use for exam
– You are in trouble if you have to use the 

book on an open-book exam

• May be useful to have integral tables

• More credit given for showing how to 
obtain solution than for providing final 
details of algebra or arithmetic


